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Abstract. We present a high-statistics Monte Carlo determination of the exponentγ for self-
avoiding walks on a Manhattan lattice in two dimensions. A conservative estimate isγ &
1.3425± 0.0003, in agreement with the universal value43

32 on regular lattices, but in conflict
with predictions from conformal field theory and with a recent estimate from exact enumerations.
We find strong corrections to scaling that seem to indicate the presence of a non-analytic exponent
1 < 1. If we assume1 = 11

16 we findγ = 1.3436± 0.0003, where the error is purely statistical.

1. Introduction

The self-avoiding walk (SAW) is a model which describes the universal properties of flexible
chain polymers in a good solvent in the dilute regime. A simple but intriguing modification has
been recently introduced to study polymers with an intrinsic orientation [1,2]. This orientation
could be due to the presence of dipole moments on the monomers of the chain or to an ordering
in the sequence of monomer constituents. On the lattice one considers SAWs with a short-
range interaction between different steps of the walk according to their relative orientation.
The partition function is simply

zN =
∑
{ω}

eβama+βpmp (1.1)

wheremp andma are respectively the number of parallel and antiparallel interactions and the
sum extends over all SAWs of lengthN .

This model has a rich phase diagram [3–7] and can be analysed theoretically [1, 2] by
mapping it into a complex O(n) model in the limitn → 0. In two dimensions, the theory
with a repulsive interaction between parallel bonds, i.e. withβa = 0, βp < 0, was analysed
using conformal invariance techniques [2]. It was shown that the new interaction is truly
marginal, giving rise to a line of fixed points. The main consequence is that the partition-
function exponentγ should vary continuously with the strength of the orientation-dependent
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interaction. The exponentγ is defined from the asymptotic behaviour of the partition function
zN , which should scale asymptotically as

zN = AµNNγ−1. (1.2)

HereA andµ are non-universal constants, whileγ is an exponent that, in the absence of the
orientation-dependent interaction, is expected to be universal: it should not depend on the
details of the interaction and it should assume the same value for any two-dimensional regular
lattice. Using Coulomb-gas techniques, Nienhuis [8] predictedγreg = 43

32, a value that has
been confirmed to high-precision by many numerical computations, see e.g. [9]. On the other
hand, for interacting oriented SAWs withβ = 0, βp < 0, γ should be a function ofβp.
Unfortunately, conformal field theory does not provide definite numerical estimates, although
it predicts thatγ (βp) should decrease monotonically asβp →−∞.

The square-lattice model was studied by exact enumerations in [3] and by transfer-matrix
techniques in [10] finding a very tiny dependence ofγ on βp, thereby supporting the field-
theory analysis. When parallel interactions are forbidden, i.e. forβp = −∞, using unbiased
approximants it was found [3] that

0.006. γreg− γ . 0.013. (1.3)

The systematic uncertainty due to the extrapolations of two different series is taken into account
in this range. The evidence for a non-universal behaviour is not overwhelming, also keeping
into account that several problems affected the results of the analysis. As the authors report,
they found small shifts of the critical fugacityµc from the value it assumes for the ordinary
SAW, in contrast with the theoretical result thatµc should not depend onβp. More worryingly,
an analysis using biased differential approximants with fixed critical fugacity gave a smaller
prediction forγreg− γ , although with much less confidence since most of the approximants
were defective. The analysis of Koo [10], based on strips of width68, was less precise. For
the largest value ofβp that was analysed,βp = −3, he findsγreg− γ = 0.018± 0.012, a
difference that is barely significant.

The evidence provided by [3, 10] for a non-universal behaviour ofγ was not conclusive
and this spurred many workers to improve the result and/or to investigate the problem using
different methods. The transfer-matrix analysis was improved in [5]: using larger strips they
did not find any evidence of a non-universal behaviour and interpreted previous results as due to
short-series effects and to the small size of the strips. Other field-theoretical predictions were
also tested. The mean value ofmp for ordinary SAWs was computed by Monte Carlo and exact-
numeration methods in [4,11]: it was found that〈mp〉 converges to a constant asN →∞, in
contrast with the field-theoretical prediction〈mp〉 ∼ logN . Recently, the behaviour of〈mp〉
on a cylinder was determined by a Monte Carlo simulation [12], also finding in this case a
result in disagreement with the field-theory predictions.

Recently, it was shown [13] that Cardy’s original argument implies that the exponentγ

for the Manhattan lattice should also be different from the exponentγreg. Indeed on this lattice
a SAW is oriented by default and parallel interactions are automatically suppressed. From the
analysis of long exact-enumeration series the authors of [13] report

γreg− γ = 0.0053± 0.0030. (1.4)

The effect is extremely small. It differs from zero by less than two error bars. The evidence
for γ 6= γreg is therefore not overwhelmingly persuasive, and the theoretical importance of
the problem requires further investigations. Indeed one can suspect that the small deviation is
simply a systematic effect due to the corrections to scaling that are not completely taken into
account by the analysis.
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We have therefore decided to investigate the problem by means of a Monte Carlo
simulation, computing the exponentγ for SAWs on a Manhattan lattice. The advantage
is that we are able to work with very long walks (N 6 Nmax= 32 000) and therefore to reduce
the unknown systematic uncertainty due to the extrapolationN →∞.

Our simulations were performed with two different algorithms. The first one, thejoin-
and-cutalgorithm [14], is a dynamic Monte Carlo algorithm that works in the ensemble of
couples of walks with fixed total length. The algorithm is at present the best one to compute
the exponentγ since the autocorrelation time in CPU units scales asN1.6, while for other
algorithms it behaves no better thanN≈2. The second algorithm is a variant of the pruned-
enriched Rosenbluth method (PERM) [15]. This is a growth algorithm. Asymptotically,
it is slower than thejoin-and-cutalgorithm in generating independent configurations. The
computer time to generate an independent configuration scales asN2. But the constant in
front ofN2 is very small, for instance the number of monomer additions needed to obtain one
independent configuration was numerically found to increase as≈0.008N2 for N > 10 000.
Therefore, it is possible that the PERM is the most efficient one even for quite long walks. As
we shall discuss, with a clever improvement, theMarkovian anticipation, the PERM is more
efficient in providing estimates ofγ than the join-and-cut algorithm as long as the length of
the sampled walks is less than 104. Only for longer walks is the join-and-cut algorithm faster.
Another advantage in the present context is that it also gives directly, together with the estimate
of the partition sum for chains of lengthNmax and without extra cost, all partition sums for
shorter chains. These estimates for differentN are not independent, but just because of this
fact they are particularly useful for estimatingγ .

The main sources of systematic errors in our analysis are the corrections to scaling,
assumed to be of the form

zN

AµNNγ−1
≈ 1 +

a

N1
+
a1

N11
+ · · · (1.5)

with1 < 11 < · · ·. All numerical evidence for SAWs on regular lattices (square, honeycomb
and triangular) indicates that the leading correction is the analytic one [16–18]. On the other
hand Saleur [19] predicted1 = 11

16, a result that was confirmed in numerical work on lattice
trails [20,21]†. Why this exponent does not show up for SAWs on regular lattices is completely
unclear.

For the Manhattan lattice, it has been shown in [13] that the enumeration data are very
well fitted using an ansatz with no non-analytic terms‡ with1 < 1. On the other hand a naive
fit of our Monte Carlo data would indicate just the opposite: the results are well fitted assuming
a correction-to-scaling exponent of order1 ≈ 0.5–0.7. Of course one should not take this
indication too seriously—our data are not precise enough for a serious attempt to determine
1—but it is fair to say that1 = 11

16 is our preferred value. If we assume1 = 11
16 we obtain

γ = 1.3436± 0.0003 (1.6)

in very good agreement withγ = γreg = 43
32 = 1.343 75. We have also tried to analyse our

data assuming1 = 1. The quality of the fit is somewhat worse, although one could think
that this is simply due to the additional neglected corrections to scaling§ that are still relevant

† An additional hint to1 = 11
16 is the numerical observation of Barkema and Flesia [4] that the average number

of loops of lengthl forming a parallel contact scales as〈mp〉l ∼ l−1.65±0.05. From this they estimate that the total
number of parallel contacts behaves as〈mp〉 = a − b/N0.65. On the other hand,〈mp〉 is proportional to dzN (T )/dT
if one includes an orientation dependent interaction, whence there should be generically a term∼ N−0.65 ≈ N−11/16

in zN (T ).
‡ Inclusion of a term with1 = 11

16 worsens the quality of the extrapolation [22].
§ A similar phenomenon occurs for SAWs on the square lattice [18]. If one analyses the end-to-end distance for short
SAWs, with a single correction term, one finds1 ≈ 0.80. Only the inclusion of longer walks and more correction
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at the values ofN we are working (the determination of1 depends mainly on the data with
Ntot = 2000, i.e. on walks withN . 1000).

We do not know how reliable the estimate (1.6) is and a serious analysis of the systematic
errors is practically impossible. In any case, without explicit assumptions on1, we can still
obtain the lower bound

γ & 1.3425± 0.0003. (1.7)

Although this result is lower than the estimate (1.6), it clearly supports the fact thatγ = γreg.
The prediction in [13],γ = 1.3385± 0.003 is instead clearly excluded.

We should point out that if we only analyse data with small values ofN , we would obtain
a lower estimate forγ , in close agreement with the result (1.4). This shows the crucial role
played in this problem by corrections to scaling and the importance of performing simulations
for very large values ofN .

2. The join-and-cut algorithm on the Manhattan lattice

2.1. Description of the algorithm

In this section we will define the pivot and the join-and-cut algorithm on a Manhattan lattice.
The Manhattan lattice is a two-dimensional square lattice on which bonds are directed in
such a way that adjacent rows (columns) have antiparallel directions, corresponding to the
traffic pattern in Manhattan. Although bonds are directed, there is no overall directional bias.
Explicitly we will assume the following orientations: a vertical bond connecting the points of
coordinates(x, y), (x, y +1) is directed upward ifx is even, downward ifx is odd; a horizontal
bond connecting the points of coordinates(x, y) and(x + 1, y) is directed to the left ify is
even, to the right ify is odd.

Let us now define the pivot algorithm [23–25]. It works in the ensemble of fixed-length
walks with free endpoints: we will be interested in self-avoiding walks, but the algorithm
can also be applied in a very efficient way to the Domb–Joyce model [26, 27], to power-law
walks [26], and to interacting polymers far from the2-transition [28,29].

The algorithm works as follows [25]. Given anN -step SAWω starting at the origin
and ending anywhere,ω ≡ {ω(0), . . . , ω(N)}, an iteration of the algorithm consists of the
following steps:

(i) Choose randomly, with uniform probability, an integerk ∈ {0, 1, . . . , N − 1}.
(ii) Choose with probabilityP(g) an elementg of the lattice point symmetry group. The

probability must satisfyP(g) = P(g−1) to ensure detailed balance.
(iii) Propose a pivot moveω→ ω′ defined by

ω′(i) =
{
ω(i) for 16 i 6 k
ω(k) + g(ω(i)− ω(k)) for k + 16 i 6 N .

(2.1)

The proposed move is accepted ifω′ is self avoiding; otherwise it is rejected and we stay
with ω.

The probabilityP(g) must be such to ensure ergodicity: as discussed in [25, 30] not all
symmetry transformations are needed. In particular [30] the pivot algorithm is ergodic on
a square lattice ifP(g) is non-vanishing only for diagonal reflections, that is for reflections
through lines of slope±1.

terms with1i > 1 gives1 ≈ 1.0.
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For the Manhattan lattice the point symmetry group is much smaller than the symmetry
group of the square lattice. Indeed the lattice is symmetric only with respect to lines of slope
−1 going through lattice points(x, y) with x + y even, and with respect to lines of slope +1
going through(x, y) with x + y odd. Therefore we will modify step (ii) in the following way:

(ii) if ωx(k) + ωy(k) is even (resp. odd), letg be the reflection with respect to a line of slope
−1 (resp. +1), going throughω(k).

Sinceg2 = 1, detailed balance is automatically satisfied. The tricky point is ergodicity. It can
be proved by slightly modifying the proof of section 5 in [30]. Using the same definitions, the
basic observation is the following: ifω(k) ≡ (xk, yk) is a walk site belonging to a diagonal
support line of slope−1 (resp. +1), thenxk + yk is even (resp. odd). Using this fact the proof
works without any change.

We wish now to define the join-and-cut algorithm [14]. The tricky point here is that in
general, given two walks on the Manhattan lattice, their concatenation is a walk that does not
respect the bond orientation of the lattice. More precisely, given two walksω1, ω2 of lengths
N1 andN2, the concatenated walkω = ω1 ◦ ω2 respects the orientation of the lattice only if†

mod(ω1x(N1)− ω2x(0), 2) = 0 mod(ω1y(N1)− ω2y(0), 2) = 0. (2.2)

This reflects the fact that only translations of two steps in each direction are symmetries of the
lattice. A second consequence of the bond orientation of the Manhattan lattice is the following:
consider a walkω and cut it into two partsω1 andω2 such thatω = ω1 ◦ ω2. In general there
is no lattice translationT such that the translated walkT ω2 respects the bond orientation of
the lattice and satisfies(T ω2)(0) = ω1(0) = ω(0). Indeed this happens only if

mod(ω1x(0)− ω2x(0), 2) = 0 mod(ω1y(0)− ω2y(0), 2) = 0. (2.3)

With these two observations in mind we define our ensemble in the following way:TNtot

consists of all pairs(ω1, ω2) of SAWs, each walk starting either in(0, 0) or in (1, 1) and
ending anywhere, such that thetotal number of steps in the two walks is some fixedeven
numberNtot. Moreover we require the lengths ofω1 andω2 to be even. Explicitly

TNtot =
Ntot/2−1⋃
k=1

(S2k(0, 0) ∪ S2k(1, 1))× (SNtot−2k(0, 0) ∪ SNtot−2k(1, 1)) (2.4)

whereSk(x, y) is the set ofk-step walks starting from(x, y) and ending anywhere. Each pair
in the ensemble is given equal weight: therefore the two walks are not interacting except for
the constraint on the sum of their lengths. Notice that there is a one-to-one correspondence
betweenSk(0, 0) andSk(1, 1) so that the ensemble defined in eqaution (2.4) is equivalent to

TNtot =
Ntot/2−1⋃
k=1

S2k(0, 0)× SNtot−2k(0, 0). (2.5)

One sweep of the algorithm consists of the following steps:

(i) Starting from a pair of walks(ω1, ω2), we update each of them independently using some
ergodic fixed-length algorithm. We use the pivot algorithm we described above.

(ii) With probability 1
2 we interchangeω1 andω2, i.e. (ω1, ω2)→ (ω2, ω1).

(iii) We first check the parity of the endpoints: if mod(ω1x(N1)−ω2x(0), 2) = 1, we stay with
(ω1, ω2) . Otherwise we attempt ajoin-and-cutmove. We choose with uniform probability
k ∈ {1, . . . , Ntot/2− 1}. Then we concatenate the two walksω1 andω2 forming a new
(not necessarily self-avoiding) walkωconc= ω1 ◦ ω2; then we cutωconc creating two new
walksω′1 andω′2 of lengths 2k andNtot − 2k. If ω′1 andω′2 are self-avoiding we keep
them; otherwise the move is rejected and we stay withω1 andω2.

† The only exception to this rule is whenω2 is a rod.
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It is easy to see that the full algorithm is ergodic.
The algorithm defined on the Manhattan lattice works essentially in the same way as the

standard one. The only important difference is that one must check the parities ofω1(N1) and
ω2(0) before attempting the join-and-cut move. This check is successful in 50% of the cases
and thus the algorithm we have defined above should be essentially equivalent to the standard
algorithm in which one performs two pivot updates of each walk for every join-and-cut move
(in the notation of [14] it corresponds to the algorithm withnpiv = 2). In principle it is easy to
avoid this 50% rejection by modifying the third step of the algorithm in the following way:

(iii) (improved join-and-cut move). If mod(ω1x(N1)− ω2x(0), 2) = 1, letωconc= ω1 ◦ Rω2,
whereRω2 is the walk reflected with respect to the line of slope +1 going throughω2(0);
if mod(ω1x(N1)− ω2x(0), 2) = 0, letωconc= ω1 ◦ ω2. Then proceed as before.

This modification attempts twice the number of join-and-cut moves with respect to the previous
one, and thus it should be more efficient. However, the difference in performance is not
expected to be large. Indeed from the analysis of the autocorrelation times in [14], we obtain†
that the ratioτint(npiv = 2)/τint(npiv = 1) is equal to 1.6, 1.5, 1.2 forNtot = 500, 2000, 8000
respectively. For the algorithm on the Manhattan lattice we expectτint(non−impr)/τint(imp)
to be very similar to the previous ratio: therefore forNtot = 8000 we expect that the
autocorrelation time for the original algorithm to be only 20–30% higher than the corresponding
time for the improved one. One should also keep in mind that one iteration of the improved
algorithm is slower than one iteration of the unimproved one, since one is doing twice the
number of join-and-cut attempts. Therefore we expect that forNtot = 8000 the improved
algorithm is only 10–20% better than the original one. Since the implementation of the
improved algorithm required major changes of our codes, we decided to work with the
unimproved version we described above.

2.2. Determination ofγ from join-and-cut data

Let us now discuss how the critical exponentγ can be estimated from the Monte Carlo data
produced by the join-and-cut algorithm.

Let us start by noticing that the random variableN1, the length of the first walk, has the
distribution

π(N1) =

zN1zNtot−N1

Z(Ntot)
if N1 is even

0 if N1 is odd
(2.6)

for 16 N1 6 Ntot− 1; hereZ(Ntot) is the obvious normalization factor andzN is the number
of N -step walks going from the origin to any lattice point whose asymptotic behaviour for
largeN is given by (1.2). The idea is then to make inferences ofγ from the observed statistics
of N1. Of course the problem is that (1.2) is an asymptotic formula valid only in the large-N

regime. We will thus proceed in the following way: we will suppose that (1.2) is valid for
all N > Nmin for many increasing values ofNmin and correspondingly we will get estimates
γ̂ (Ntot, Nmin); these quantities areeffectiveexponents that depend onNmin and that give correct
estimates ofγ asNmin andNtot go to infinity.

The determination ofγ from the data is obtained using the maximum-likelihood method
(see e.g. [31]). We will present here only the results: for a detailed discussion we refer the
reader to [14].

† Notice that in [14]τint(npiv) is reported in units of two iterations, each iteration consisting ofnpiv pivot attempts
and one join-and-cut attempt. In order to make a correct comparison we should multiplyτint(npiv) bynpiv. Thus what
we report asτint(npiv = 2) corresponds to 2τint(npiv = 2) of [14].
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Table 1. Number of iterations and CPU times per iteration for various values ofNtot. CPU-times
are expressed in ms and refer to an Alpha-Station 600 Mod 5/266.

Ntot Niter CPU-time

500 109 0.248(1)
2000 12× 108 0.846(8)
8000 33× 108 2.41(3)
32 000 23× 108 9.08(2)

GivenNmin, consider the function (from now on we suppress the dependence onNtot)

θNmin(N1) =
{

1 if Nmin 6 N1 6 Ntot −Nmin

0 otherwise
(2.7)

and letX be the random variable

X = log[N1(Ntot −N1)]. (2.8)

Then define

Xcens(Nmin) = 〈XθNmin〉
〈θNmin〉

(2.9)

where the average〈 · 〉 is taken in the ensembleTNtot sampled by the join-and-cut algorithm.
The quantity defined in equation (2.9) is estimated in the usual way from the Monte Carlo data
obtaining in this wayXcens

MC (Nmin). Thenγ̂ (Nmin) is computed by solving the equation

Xcens
MC (Nmin) = [X]th,γ̂ (Nmin) (2.10)

where, for every function ofN1, we define

[f (N1)]th,γ (Nmin) ≡
∑Ntot−Nmin

N1=Nmin
f (N1)N

γ−1
1 (Ntot −N1)

γ−1∑Ntot−Nmin
N1=Nmin

N
γ−1
1 (Ntot −N1)γ−1

(2.11)

here the sum is extended overevenvalues ofN1. The variance of̂γ (Nmin) is then given by

Var [γ̂ (Nmin)] = Var (Xcens
MC (Nmin))

([X;X]th,γ̂ (Nmin))2
(2.12)

where [X;X] = [X2] − [X]2. We must finally compute Var(Xcens
MC (Nmin)). As this quantity

is defined as the ratio of two mean values (see equation (2.9)) one must take into account the
correlation between denominator and numerator. Here we have used the standard formula for
the variance of a ratio (valid in the large-sample limit)

Var

(
A

B

)
= 〈A〉

2

〈B〉2 Var

(
A

〈A〉 −
B

〈B〉
)
. (2.13)

2.3. Dynamic behaviour

Let us first discuss the simulations using the join-and-cut algorithm. We have performed
high-statistics runs atNtot = 500, 2000, 8000 and 32 000. In table 1 we report the number
of iterations and the CPU time per iteration on an Alpha-Station 600 Mod 5/266. The total
join-and-cut runs took 1 year of CPU on this machine.

In table 2 we report the acceptance fraction of the pivot and of the join-and-cut moves,
and, for two different values ofNmin, the autocorrelation times for the observable

Y (Nmin) = XθNmin

〈XθNmin〉
− θNmin

〈θNmin〉
(2.14)
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Table 2. Acceptance fraction for the pivot move (fpiv), for the join-and-cut move (fjc) and
autocorrelation times for the various values ofNtot. Autocorrelation times are expressed in units
of two iterations.

Ntot fpiv fjc τint,Y (1) τint,Y (100)

500 0.451 943(11) 0.155 468(11) 4.912± 0.031 8.171± 0.023
2000 0.344 631 6(86) 0.099 862 9(77) 14.30± 0.23 19.38± 0.12
8000 0.262 405 0(83) 0.062 992 5(65) 49.6± 1.2 55.8± 1.0
32 000 0.199 693(46) 0.039 330(31) 202.4± 7.4 206.7± 7.0

that, according to equation (2.13), controls the errors onγ . Notice thatY (2) = X/〈X〉 − 1,
so thatτint,Y (2) = τint,X.

To compute the autocorrelation times we used the recipe of [32, appendix C]. Indeed
the autocorrelation function has a very long tail with a very small amplitude, due to the fact
thatτexp� τint,Y . For this reason the self-consistent windowing method in [25, appendix C]
does not work correctly and underestimates the autocorrelation time. Following [32], we have
computedτint,Y as

τint,Y = τ̄int,Y + τtail,Y . (2.15)

Hereτ̄int,Y is the autocorrelation time computed using the self-consistent windowing method
of [25, appendix C] with windowW = 15τ̄int,Y and

τtail,Y = ρY (W)W log

(
N

Wfpiv

)
(2.16)

whereρY (t) is the normalized autocorrelation function andfpiv is the acceptance fraction of the
pivot algorithm. Of course equation (2.16) is a very rough ad hoc estimate of the contribution
of the tail. ForX, it amounts to approximately 35% forNtot = 32 000, 24% forNtot = 8000,
15% forNtot = 2000, and 5% forNtot = 500. Based on our experience with the pivot algorithm
we have assigned toτtail,Y an error of 10%. The error on̄τint,Y was instead computed as in [25].

We have first analysed the acceptance fractions. The general analysis in [14] predicts
fpiv ∼ N−p andfjc ∼ N−q , with p ≈ 0.19 andq ≈ γ − 1 ≈ 0.34. A least-square fit to the
data of table 2 gives

p = 0.196 05± 0.000 01 χ2
1 = 603 (2.17)

q = 0.325 22± 0.000 04 χ2
1 = 9197. (2.18)

The very large value ofχ2 indicates that the quoted errors onp andq, that are of a purely
statistical nature, are unreliable. Indeed a simple power law does not fit the data at this level
of precision. A more realistic estimate of the errors would be

p = 0.1960± 0.0002 q = 0.325± 0.004. (2.19)

We have then performed an analogous analysis for the autocorrelation timeτint,Y (Nmin). A
least-square fit of the form

τint,X ∼ Nz (2.20)

gives

z =


0.847± 0.006 χ2
1 = 71 for Nmin = 1

0.672± 0.004 χ2
1 = 280 for Nmin = 100

0.747± 0.003 χ2
1 = 50 for Nmin = 200.

(2.21)

Again, the very large value ofχ2 indicates that the error bars are underestimated by at
least a factor of ten. The results are somewhat higher than the estimate reported in [14],
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z = 0.70± 0.03. This is evident if one directly compares our results of table 2 with the
values ofτint reported in [14] (see footnote on p 6):τint = 4.38(6), 9.47(21), 20.0(6) for
Ntot = 500, 2000 and 8000, respectively. ForNtot = 500 the autocorrelation times are similar,
while for Ntot = 8000 there is a factor-of-two difference. It is very difficult to believe that
the join-and-cut algorithm has a different dynamic behaviour on the square lattice and on the
Manhattan lattice. We have thus tried to understand if the authors in [14] underestimated the
autocorrelation times. Therefore we have determinedτint from our data using the self-consistent
windowing procedure with a window of 5τint,X as done in [14]. We obtainτint = 4.166(2),
10.093(6), 29.13(2), 98.0(2) for Ntot = 500, 2000, 8000 and 32 000, respectively. A fit of
these results givesz = 0.7271(2). This is now in good agreement with the results of [14].

In conclusion we believe a fair estimate would be

z = 0.75± 0.05. (2.22)

As noticed in [14], with a clever implementation of the algorithm, it is possible that the
CPU-time per iteration increases asNσ withσ < 1. In particular it was predicted thatσ = 1−p
wherep is the exponent that controls the pivot acceptance fraction. In two dimensions we
expectp = 0.1953(21) [25] and this is confirmed by our data on the acceptance fraction.
From the data of table 2 we obtain

σ = 0.865(1) χ2
1 = 55. (2.23)

Keeping into account that the error bars are underestimated, we find reasonable agreement
with the predictionσ = 1−p. Of course what one is really interested in is the autocorrelation
times expressed in CPU units.

We find

τint ∼ Nz+σ ∼ N1.6. (2.24)

The algorithm is not optimal, but still represents an improvement with respect to other
algorithms that behave asN≈2.

3. PERM

3.1. Description of the algorithm

The pruned-enriched Rosenbluth method (PERM) is a chain-growth algorithm based on the
well known Rosenbluth (inverse restricted sampling) [33] algorithm. In the latter, chains are
grown step by step. In unbiased sampling, steps are randomly generated, and, if a new step
violates the self-avoidance constraint, the configuration is discarded and one restarts from
scratch. This leads to exponential ‘attrition’, i.e. the number of attempts needed to generate a
chain of lengthn increases exponentially withn.

In Rosenbluth sampling, such steps are replaced (if possible) by ‘correct’ steps. This
diminishes the attrition problem, but it leads to a bias that has to be compensated by a weight
factor. If mn is the number of free sites where to place thenth monomer (i.e., the number
of allowed steps at timen), then the weight of a chain of lengthN isWN ∝

∏N
n=1mn. The

proportionality factor depends on the ensemble one wants to simulate, e.g. it is constant for
the canonical ensemble with fixed fugacity. The main problem with the Rosenbluth method is
the fact that these weights show large fluctuations for largeN . Thus even large samples can be
completely dominated by just a few events, which leads to large statistical errors. Even worse,
for very largeN , the part of the distribution of weights which should dominate might not have
been sampled at all, and this can lead to systematic errors. More precisely, while the method
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is guaranteed to give an unbiased estimate of the partition sum, due to these fluctuations and
to the convexity of the logarithm, estimates of free energies are systematically too small.

The main idea in PERM [15] is to watch the weightWN asN is growing, and to compare
it with the estimated average weight for this value ofN . If WN is judged too big, a clone
of the present configuration is made, both clones are attributed a weightWN/2, and both are
independently continued (‘enrichment’). On the other hand, ifWN is too small, a (pseudo-)
random numberr is drawn uniformly from [0, 1]. If r < 1

2, the configuration is abandoned
(‘pruning’), otherwise it is kept and its weight is doubled. This is most easily implemented by
recursive function calls. A pseudocode is given in [15].

In this way the problem of large weight fluctuations is avoided, although not entirely.
The set of generated configurations is now correlated due to cloning. Let us call atour a
set of configurations obtained by cloning from the same ‘ancestor’. Although the weights of
individual configurations vary between narrow limits, the weights of tours can fluctuate very
much. If so, we are basically back at the same problem. This can be avoided by making
additional biases. For instance, before each step one might look aheadk steps, and choose the
direction accordingly [34]. This is rather time consuming for largek, nevertheless it can be
efficient for dense (collapsed) systems.

For diluted systems, as it is the case here, the efficiency can be improved usingMarkovian
anticipation[12, 35]. Here one keeps the lastk steps in memory, and biases the next step on
the basis of the statistics of (k + 1)-step configurations accumulated during a previous run.

On the Manhattan lattice, anN -step walk with fixed starting point and fixed direction of
the first step can be encoded as a binary sequence of lengthN − 1. A straight step is encoded
as ‘0’, while a bend by±90◦ is encoded as ‘1’. Notice that one does not have to specify the
direction of the bend, as only one bend is allowed at any time step. If the starting point has
evenx andy and the first step is upward, then the first bend is to the right (left) if it occurs
at even (odd) times. After that, each bend is in the same (opposite) direction as the previous
one if the number of in-between straight steps is even (odd). LetS = (s−k, . . . , s0) ≡ (s, s0)
denote a binary string of lengthk + 1, and letCN,m(S) be thecylinder setof all N -step
walks starting upward from(x, y) = (0, 0), for which stepsm − k, . . . , m are given byS.
The total weight of this set in an unbiased ensemble is denoted byWN,m(S). Finally, we
consider

pN,m(s0|s) = WN,m(S)∑
s ′0=0,1WN,m(s, s

′
0)
. (3.1)

If SAWs were a kth order Markov process, we would obtain perfect impor-
tance sampling for N -step walks if we would select themth step accord-
ing to pN,m(s0|s). Given the fact that SAW’s are not Markovian, equa-
tion (3.1) comes closest to importance sampling given a finite (k-step) mem-
ory.

In practice, equation (3.1) is not applicable as it stands, since it is practically impossible
to acquire and store the necessary statistics for allm andN . First of all we use the fact that
pN,m(s0|s) becomes independent ofN andm in the limit m,N − m � k. We therefore
estimate it for large values ofm andN by accumulating statistics for allN larger than some
lower threshold (we usedN > 400), andN −m fixed (we usedN −m = 200). The fact that
thisp(s0|s) does not give correct importance sampling form ≈ N is not serious and does not
reduce much the efficiency. More serious is the fact that it would be inappropriate for small
N andm. In particular, form < k we have no strings to condition upon. We dealt with this
problem by tapering the symbol sequence with a string ofk zeros, and by taking steps0 in the
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Figure 1. Probabilities to reach lengthN at least once in a tour, plotted againstN . The curves
are for PERM withk-step Markovian anticipation, withk = 19, 10, 5, and 0. The straight line is
130/N .

mth step with probability

pm(s0|s) = const/m + limm,N−m→∞ pN,m(s0|s)∑
s ′0=0,1[const/m + limm,N−m→∞ pN,m(s0|s)] (3.2)

with const≈ 20.
Notice that all this fiddling is not crucial. The methodper se is correct even if the

probabilities for taking themth step were chosen badly, provided the probability is not set
equal to zero for any allowed step. But efficiency can increase substantially with a good
choice. Efficiency can be measured in several ways. The most straightforward method
consists in measuring tour-to-tour fluctuations. Since subsequent tours are statistically strictly
uncorrelated, this gives immediately estimates for the error bars of any measured observable.
In practice, not to waste CPU time, we bunched tours in groups of typically 104 tours, and
measured average values and fluctuations over these bunches.

A less direct but more instructive measure of efficiency is the number of tours in which a
lengthN is reached in at least one configuration, normalized to the number of all tours. For
other modified chain-growth algorithms such as incomplete enumeration [36] or the Berretti–
Sokal (BS) algorithm [37], it seems that this number decreases as const/N , provided the
cloning and pruning parameters are adjusted so that the total number of generated walks is
independent ofN . Improving the details of the algorithm cannot change this scaling law, but
can change the constant considerably. For incomplete enumeration and the BS algorithm, the
constant is O(1). For PERM without Markovian anticipation const≈ 10. For Markovian
anticipation withk = 19 we found const≈ 130, see figure 1.

A last check for efficiency is the following. As we said, the weights of tours can vary
substantially, to the point that the distribution of these weights might be not properly sampled
in the region which should dominate statistical averages. If this happens, the estimates of the
free energies are too low, and all the errors are systematically underestimated. To show that this
is not the case in the present simulation, we show in figure 2 the measured distribution of tour
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Figure 2. Full line: histogramP(logW) of tours with fixed weightW , on a logarithmic horizontal
scale. Normalization is arbitrary. Broken line:W ×P(logW), again with arbitrary normalization.

weights forN = 32 000, together with the weighted distribution. We see that the maximum of
the weighted distribution occurs at a weight which is still well within our sampling distribution.

3.2. Determination ofγ using PERM data

The raw data produced by PERM are estimates of the partition sumzN , for all N 6 Nmax. It
is then straightforward to obtain estimates ofγ . Assuming equation (1.2), the exponentγ can
be estimated from ratios ofzNi for three different values ofNi . Indeed, if one chooses two
positive constantsa < 1< b, and defines

γeff(N) = x logzaN + y logzbN − logzN
x loga + y logb

(3.3)

one checks easily thatγeff(N) = γ , provided that [38]

x + y = 1 ax + by = 1. (3.4)

If equation (1.2) is not fulfilled exactly, equations (3.3) and (3.4) define effectiveN -dependent
exponents. These exponents still depend ona andb. It is clear that statistical errors will be
small if a � 1� b, but then a wide range of chain lengths are needed. SinceNmax is fixed
and cannot be exceeded, this means thataN will be small, and systematic errors will become
large if we wish to reduce statistical errors. In addition to the ratiob/a, one has the product
a×b at one’s disposal. For fixedb/a, its optimal value depends on the way how the statistical
error onzN increases withN . In the present case, they increase roughly as

√
N . For practical

reasons one also wishesa−1 andb to be simple numbers. We found that good results were
obtained witha = 1

2, b = 4 (and thereforex = 6
7, y = 1

7).
The computation of the error bars is not trivial. Indeed one should take into account the

fact that differentzN are correlated and therefore compute the full covariance matrix, which
is practically impossible. Therefore we proceeded differently to obtain error estimates. For
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Table 3. Number of PERM tours (column 2) withN 6 Nmax, total number of configurations with
N = Nmax (column 3), number of independent configurations withN = Nmax (i.e., of tours which
reachedN = Nmax; column 4), and CPU time per independent configuration (expressed in ms, on
an Alpha-Station 600 Mod 5/266; column 5).

Nmax Ntour Nconfig Nindep CPU time

500 1.0× 106 1.140× 106 2.637× 105 4.985
2000 8.876× 108 1.010× 109 6.533× 107 70.53
4000 1.756× 108 2.016× 108 6.359× 106 298.6
8000 3.421× 108 4.035× 108 6.296× 106 1272.6(4)
32 000 2.792× 107 3.703× 107 1.154× 105 244(7)× 102

each bunch of tours we estimated [γeff(N)]bunch according to equation (3.3), and from these
values we obtained the variance of the latter. Notice that we didnot use this procedure to
obtainγeff(N) itself by taking the average over all bunches, as this would introduce a bias.

In addition, in order to improve the estimates ofXcens(Nmin), cf equation (2.9), obtained
using the join-and-cut algorithm, we evaluated this quantity using the PERM estimates ofzN .
The estimate of the mean value is trivial. For the error bars, we evaluated [Xcens(Nmin)]bunch

over bunches of tours and then estimated their variance. We used the same trick as forγeff .
Again, notice that we did not use this procedure to estimate the mean value itself, since this
introduces a bias. We have checked, however, that this bias is extremely small.

3.3. Dynamic results

Let us now discuss the simulations using PERM. We have performed high-statistics runs using
Markovian anticipation withk = 19. The dynamic data of the runs are reported in table 3.
The total PERM simulation would have taken approximately 7 months of CPU time on an
Alpha-Station 600 Mod 5/266.

We have first of all performed an analysis of the CPU time per independent configuration,
which we expect to scale asaNz with z ≈ 2. Fitting the data of table 3, and including in each
fit only the data withN > Nmin in order to detect systematic effects, we have

z ≈
{

1.92 Nmin = 500

2.08 Nmin = 2000
(3.5)

a ≈
{

0.000 03 Nmin = 500

0.000 01 Nmin = 2000.
(3.6)

The expected exponentz ≈ 2 is clearly recovered. Let us now compare these results with the
join-and-cut estimates. For the latter algorithm, the CPU time per independent configuration
scales as (cf tables 1 and 2)≈ 0.0003N1.6 and therefore the join-and-cut is faster in generating
one independent configuration than the PERM as long asN & 1000. This may not be, however,
a fair comparison of the two algorithms. Indeed what we call an ‘independent configuration’
for PERM is a bunch of walks which are correlated, but which still contain more information
than a single walk. In order to make a fair comparison it is better to consider an observable and
compare the CPU time needed to obtain the same error bars. We have therefore compared the
results for our preferred observableXcens(Nmin), see table 4. We find that forNtot = 32 000
both algorithms require essentially the same CPU time to produce data with the same error
bars. Only for longer walks the join-and-cut algorithm is more efficient. Notice that this result
is true if we use the Markovian anticipation. In the absence of this improvement, PERM would
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Table 4. Raw data forXcens
MC . We report separately the results obtained with the PERM and

join-and-cut algorithms.

Ntot = 500 Ntot = 2000

Nmin Xcens
PERM Xcens

jc Nmin Xcens
PERM Xcens

jc

2 10.599 798 20(1214) 10.599 773 4(851) 2 13.373 844 1(259) 13.374 033(132)
20 10.682 816 51(924) 10.682 800 3(692) 50 13.428 551 7(215) 13.428 669(115)
40 10.757 165 91(695) 10.757 131 6(555) 100 13.479 698 2(176) 13.479 777(100)
60 10.818 015 10(514) 10.817 977 0(447) 150 13.524 659 2(144) 13.524 727(87)
80 10.868 504 52(365) 10.868 480 7(356) 200 13.564 436 9(118) 13.564 528(77)
100 10.910 576 82(248) 10.910 578 7(280) 250 13.599 809 6(96) 13.599 867(67)
120 10.945 532 80(170) 10.945 560 5(216) 300 13.631 361 0(77) 13.631 408(58)
140 10.974 279 40(116) 10.974 288 9(162) 350 13.659 541 1(61) 13.659 569(51)
160 10.997 466 09(70) 10.997 473 7(115) 400 13.684 701 0(48) 13.684 742(43)
180 11.015 570 64(39) 11.015 571 6(77) 450 13.707 121 8(38) 13.707 140(37)
200 11.028 931 62(21) 11.028 925 9(46) 500 13.727 027 9(29) 13.727 030(31)

Ntot = 8000 Ntot = 32 000

Nmin Xcens
PERM Xcens

jc Nmin Xcens
PERM Xcens

jc

2 16.148 415(85) 16.148 470(199) 2 18.922 02(76) 18.922 11(36)
100 16.175 459(77) 16.175 516(184) 100 18.927 96(75) 18.928 04(35)
200 16.203 131(70) 16.203 156(171) 200 18.934 83(73) 18.934 86(34)
300 16.229 231(64) 16.229 317(160) 300 18.941 85(71) 18.941 84(33)
400 16.253 729(58) 16.253 832(150) 400 18.948 89(70) 18.948 84(33)
500 16.276 733(52) 16.276 882(140) 500 18.955 88(68) 18.955 82(32)
600 16.298 361(48) 16.298 492(131) 600 18.962 80(66) 18.962 75(31)
700 16.318 720(43) 16.318 815(123) 700 18.969 64(65) 18.969 60(31)
800 16.337 910(39) 16.337 938(114) 800 18.976 39(63) 18.976 35(30)
900 16.356 014(36) 16.356 073(106) 900 18.983 03(62) 18.982 97(30)
1000 16.373 112(32) 16.373 133(100) 1000 18.989 58(60) 18.989 51(29)
1100 16.389 269(29) 16.389 252(93) 1100 18.996 03(59) 18.995 99(29)
1200 16.404 539(26) 16.404 505(87) 1200 19.002 37(58) 19.002 35(28)
1300 16.418 976(24) 16.418 930(81) 1300 19.008 63(56) 19.008 53(27)
1500 16.445 524(19) 16.445 475(71) 1500 19.020 85(53) 19.020 71(26)

2000 19.049 78(47) 19.049 73(24)
2500 19.076 57(42) 19.076 49(22)
3000 19.101 44(37) 19.101 30(21)

be about ten times slower and therefore less efficient than the join-and-cut algorithm already
for N ≈ 500.

4. Estimate ofγ

Let us now discuss the results for the critical exponentγ . We will first analyse the data using the
method presented in section 2.2. This will allow us to use at the same time the data produced
using the join-and-cut and the PERM. In table 4 we report, for variousNmin, the estimates
of Xcens

MC (Nmin) obtained using the two algorithms. We have checked that the raw data agree
within error bars, therefore checking the correctness of our programs and error bars.

In table 5 we report the estimates of the effective exponentsγ̂ defined in section 2.2.
A graph of these estimates together with the results of the fits described below is reported
in figure 3. It is evident that the corrections to scaling are particularly strong and indeed
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Table 5. Estimates ofγ (Ntot) for various values ofNmin andNtot.

Nmin γ (500) Nmin γ (2000) Nmin γ (8000) Nmin γ (32 000)

2 1.329 50 (3) 2 1.332 63 (7) 2 1.337 73 (21) 2 1.340 59 (87)
20 1.325 84 (5) 50 1.334 23 (9) 100 1.339 00 (25) 100 1.340 97 (92)
40 1.327 76 (7) 100 1.335 16 (12) 200 1.339 50 (29) 200 1.341 05 (97)
60 1.328 80 (9) 150 1.335 69 (14) 300 1.339 87 (33) 300 1.341 05 (101)
80 1.329 55 (12) 200 1.336 09 (17) 400 1.340 15 (36) 400 1.341 06 (105)
100 1.330 11 (15) 250 1.336 38 (19) 500 1.340 41 (40) 500 1.341 12 (109)
120 1.330 64 (20) 300 1.336 61 (22) 600 1.340 58 (44) 600 1.341 22 (114)
140 1.331 20 (28) 350 1.336 81 (26) 700 1.340 68 (48) 700 1.341 36 (118)
160 1.331 39 (40) 400 1.336 92 (30) 800 1.340 70 (53) 800 1.341 43 (123)
180 1.330 51 (63) 450 1.337 05 (35) 900 1.340 80 (58) 900 1.341 39 (127)
200 1.332 35 (132) 500 1.337 11 (42) 1000 1.340 77 (63) 1000 1.341 43 (131)

1100 1.340 75 (68) 1100 1.341 62 (136)
1200 1.340 73 (74) 1200 1.341 72 (139)
1300 1.340 72 (80) 1300 1.341 47 (143)
1500 1.340 77 (94) 1500 1.341 40 (153)

2000 1.342 32 (178)
2500 1.342 56 (205)
3000 1.342 50 (236)

Figure 3. Estimates of the effective exponentsγ̂ for Ntot = 2000 (empty circle), 8000 (empty
square), 32 000 (empty triangle) and estimates obtained with the optimal amplitude method for
1 = 11

16 (filled triangle) and1 = 1 (filled circle). The dotted lines representγreg = 43
32 and the

estimate of [13],γ = 1.3385.

γ̂ clearly increases withNmin andNtot. Under the only assumption that in the interval
1000. N 6 32 000 the corrections to scaling have the asymptotic sign, i.e. if we exclude
that γ̂ will decrease for larger values ofNmin andNtot, we obtain (usingNtot = 32 000,
Nmin = 2000)

γ & 1.3423± 0.0018. (4.1)



2946 S Caracciolo et al

Table 6. Extrapolated estimates ofγ for 1 = 11
16 and1 = 1.

1 = 11
16 1 = 1

Nmin γ aopt γ aopt

2 1.343 06 (6) 0.43 (1) 1.341 59 (6) 0.85 (2)
100 1.343 00 (10) 0.51 (4) 1.342 00 (10) 1.75 (13)
200 1.343 18 (14) 0.54 (4) 1.341 98 (14) 1.93 (24)
300 1.343 44 (18) 0.57 (5) 1.341 92 (18) 1.98 (36)
400 1.343 57 (22) 0.59 (5) 1.342 30 (22) 2.23 (50)
500 1.343 56 (27) 0.59 (6) 1.342 51 (27) 2.40 (59)

This clearly excludes the result in [13]. Under this very weak assumption, we can conclude that
there is no evidence from our data of the non-universality predicted in [2]. More conservatively,
our data indicate that, if the effect is really there, it is extremely small:

γreg− γ < 0.0014± 0.0018. (4.2)

We can improve this bound making additional assumptions on the corrections to scaling.
For each value ofNmin we assume thatzN is well approximated by

zN = AµNNγ−1(1 +aN−1) (4.3)

for N > Nmin. We are not able to determine1 reliably and therefore we have performed fits
for various fixed values of1. Our analysis works as follows. For each triple(Nmin, Ntot, a)

and for each value of1, we can define an effective exponentγ̂ (Nmin, Ntot, a) (from now on we
suppress the dependence on1) using the natural generalization of equations (2.10) and (2.11)
with a corresponding error1γ̂ (Nmin, Ntot, a). Then for eachNmin and1 we determine the
optimal valueaopt of a and an estimate of the exponentγ̄ (Nmin), by minimizing with respect
to a andγ̄ (Nmin)

χ2 =
∑
Ntot

[
γ̂ (Nmin, Ntot, a)− γ̄ (Nmin)

1γ̂ (Nmin, Ntot, a)

]2

(4.4)

where the sum runs overNtot = 2000, 8000, 32 000. The statistical errors are obtained in a
standard fashion.

In table 6 we report the results of the fits for various values ofNmin and for two values of
1,1 = 1 and1 = 11

16. First let us observe that the estimate ofγ decreases with increasing1.
Therefore a lower bound independent of any assumption on the value of1 is obtained using
the results for1 = 1. From table 6 we can estimate

γ & 1.3425± 0.0003. (4.5)

We can try to do more and see if we can obtain from the data a rough indication of the value
of 1. In principle we can consider the results for variousNmin and see for which value of
1 the estimates do not depend onNmin. Notice however that the results with differentNmin

are strongly correlated—they are obtained essentially from the same data—and therefore an
observed stability or upward trend should be interpreted with caution since it could simply be
an effect of the correlations. If we consider the results of table 6 we see that the analysis with
1 = 11

16 is extremely stable:aopt andγ are essentially constant and we can estimate

γ = 1.3436± 0.0003. (4.6)

This result is in perfect agreement with the universal valueγreg = 43
32. On the other hand the

results for1 = 1 show an upward systematic trend. However, the effect is barely statistically
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Figure 4. Effective exponentsγeff defined by equation (3.3), plotted againstN−11/16. The
extrapolation to they-axis gives the estimate ofγ .

significant (the results forNmin = 100 andNmin = 500 differ approximately by 1.5 combined
error bars) and one could just think that the systematic increase is simply an effect due to the
neglected corrections to scaling and/or a result of the correlations. Without further hypotheses,
we cannot confidently go beyond the lower bound (4.5). However, if we assumeγ = γreg,
then1 = 1 becomes less plausible and we can say that our data favour the presence of a
non-analytic exponent. We cannot give a reliable estimate of1, but Saleur’s value11

16 fits our
data very well.

This conclusion is fully supported by the alternative analysis of the PERM data using
equation (3.3). In figure 4 we plotγeff , obtained witha = 1

2, b = 4, againstN−11/16. If 1
has Saleur’s value, and if there are no other corrections to scaling, we should expect a straight
line intersecting they-axis atγ . The most dramatic deviations from a straight line are strong
period-four oscillations, also observed in [13]. Similar period-four oscillations are observed
for SAWs on the square lattice [9]. They correspond to a singularity of the grand canonical
partition sum atx = −1/µ [39]. In figure 4 one may also observe a slight curvature which
might suggest that1 < 11

16. However, a more careful analysis, also using different pairs
(a, b) and additional correction-to-scaling terms, suggests that this effect is not significant. In
contrast, the fact that1 < 1 seems significant. Accepting for1 a value between12 and 0.7,
we find again perfect agreement withγreg= 43

32, while the estimate in [13] seems ruled out.
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