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Abstract. We present a high-statistics Monte Carlo determination of the expgnéot self-
avoiding walks on a Manhattan lattice in two dimensions. A conservative estimate s
1.3425+ 0.0003, in agreement with the universal vaIé% on regular lattices, but in conflict

with predictions from conformal field theory and with a recent estimate from exact enumerations.
We find strong corrections to scaling that seem to indicate the presence of a non-analytic exponent
A < 1. If we assume\ = % we findy = 1.34364+ 0.0003, where the error is purely statistical.

1. Introduction

The self-avoiding walk (SAW) is a model which describes the universal properties of flexible
chain polymers in a good solvent in the dilute regime. A simple but intriguing modification has
been recently introduced to study polymers with an intrinsic orientation [1,2]. This orientation
could be due to the presence of dipole moments on the monomers of the chain or to an ordering
in the sequence of monomer constituents. On the lattice one considers SAWSs with a short-
range interaction between different steps of the walk according to their relative orientation.
The partition function is simply

Iy = Z ghama*fpm, (1.1)
{w}
wherem , andm, are respectively the number of parallel and antiparallel interactions and the
sum extends over all SAWSs of length.

This model has a rich phase diagram [3—7] and can be analysed theoretically [1, 2] by
mapping it into a complex @) model in the limitn — 0. In two dimensions, the theory
with a repulsive interaction between parallel bonds, i.e. Wijth= 0, 8, < 0, was analysed
using conformal invariance techniques [2]. It was shown that the new interaction is truly
marginal, giving rise to a line of fixed points. The main consequence is that the partition-
function exponeny should vary continuously with the strength of the orientation-dependent

|| E-mail addressSergio.Caracciolo@sns.it

€ E-mail addressM.S.Causo@fz-juelich.de

* E-mail addressP .Grassberger@fz-juelich.de
* E-mail addresspelisset@ibmth.df .unipi.it

0305-4470/99/162931+18$19.50 © 1999 IOP Publishing Ltd 2931



2932 S Caracciolo et al

interaction. The exponemtis defined from the asymptotic behaviour of the partition function
zwn, Which should scale asymptotically as

v = ApV N (1.2)

Here A andu are non-universal constants, whiteis an exponent that, in the absence of the
orientation-dependent interaction, is expected to be universal: it should not depend on the
details of the interaction and it should assume the same value for any two-dimensional regular
lattice. Using Coulomb-gas techniques, Nienhuis [8] predigigg = ‘3‘—2, a value that has

been confirmed to high-precision by many numerical computations, see e.g. [9]. On the other
hand, for interacting oriented SAWSs wigh = 0, 8, < 0, y should be a function og,.
Unfortunately, conformal field theory does not provide definite numerical estimates, although
it predicts thaty (8,,) should decrease monotonically gs — —oo.

The square-lattice model was studied by exact enumerations in [3] and by transfer-matrix
techniques in [10] finding a very tiny dependenceyobn g,, thereby supporting the field-
theory analysis. When parallel interactions are forbidden, i.egfox —oo, using unbiased
approximants it was found [3] that

0.006 < yeg— ¥ < 0.013 (1.3)

The systematic uncertainty due to the extrapolations of two different series is taken into account
in this range. The evidence for a non-universal behaviour is not overwhelming, also keeping
into account that several problems affected the results of the analysis. As the authors report,
they found small shifts of the critical fugacity, from the value it assumes for the ordinary
SAW, in contrast with the theoretical result thatshould not depend gf},. More worryingly,
an analysis using biased differential approximants with fixed critical fugacity gave a smaller
prediction foryeg — y, although with much less confidence since most of the approximants
were defective. The analysis of Koo [10], based on strips of witBhwas less precise. For
the largest value oB, that was analysedi, = —3, he findsyeg — y = 0.018+ 0.012, a
difference that is barely significant.

The evidence provided by [3, 10] for a non-universal behavioyr ofas not conclusive
and this spurred many workers to improve the result and/or to investigate the problem using
different methods. The transfer-matrix analysis was improved in [5]: using larger strips they
did not find any evidence of a non-universal behaviour and interpreted previous results as due to
short-series effects and to the small size of the strips. Other field-theoretical predictions were
alsotested. The mean valuewf for ordinary SAWs was computed by Monte Carlo and exact-
numeration methods in [4, 11]: it was found ti{at,) converges to a constant A5— oo, in
contrast with the field-theoretical predictidm ,) ~ log N. Recently, the behaviour @z )
on a cylinder was determined by a Monte Carlo simulation [12], also finding in this case a
result in disagreement with the field-theory predictions.

Recently, it was shown [13] that Cardy’s original argument implies that the expgnent
for the Manhattan lattice should also be different from the expopggtindeed on this lattice
a SAW is oriented by default and parallel interactions are automatically suppressed. From the
analysis of long exact-enumeration series the authors of [13] report

Yreg— ¥ = 0.0053 0.003Q (1.4)

The effect is extremely small. It differs from zero by less than two error bars. The evidence
for y # v, is therefore not overwhelmingly persuasive, and the theoretical importance of
the problem requires further investigations. Indeed one can suspect that the small deviation is
simply a systematic effect due to the corrections to scaling that are not completely taken into
account by the analysis.
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We have therefore decided to investigate the problem by means of a Monte Carlo
simulation, computing the exponept for SAWs on a Manhattan lattice. The advantage
is that we are able to work with very long walks (< Nmax = 32 000) and therefore to reduce
the unknown systematic uncertainty due to the extrapolatior co.

Our simulations were performed with two different algorithms. The first onejcine
and-cutalgorithm [14], is a dynamic Monte Carlo algorithm that works in the ensemble of
couples of walks with fixed total length. The algorithm is at present the best one to compute
the exponenis since the autocorrelation time in CPU units scalesva$, while for other
algorithms it behaves no better thafi*2. The second algorithm is a variant of the pruned-
enriched Rosenbluth method (PERM) [15]. This is a growth algorithm. Asymptotically,
it is slower than thgoin-and-cutalgorithm in generating independent configurations. The
computer time to generate an independent configuration scal¥$.a8ut the constant in
front of N2 is very small, for instance the number of monomer additions needed to obtain one
independent configuration was numerically found to increase808N? for N > 10 000.
Therefore, it is possible that the PERM is the most efficient one even for quite long walks. As
we shall discuss, with a clever improvement, Markovian anticipationthe PERM is more
efficient in providing estimates of than the join-and-cut algorithm as long as the length of
the sampled walks is less than*1@nly for longer walks is the join-and-cut algorithm faster.
Another advantage in the present context is that it also gives directly, together with the estimate
of the partition sum for chains of lengthi,ax and without extra cost, all partition sums for
shorter chains. These estimates for differ&¥nare not independent, but just because of this
fact they are particularly useful for estimatipg

The main sources of systematic errors in our analysis are the corrections to scaling,

assumed to be of the form
Z—N ~1+ i + i +
ApNNr-1 N2 N
with A < A; < ---. Allnumerical evidence for SAWSs on regular lattices (square, honeycomb
and triangular) indicates that the leading correction is the analytic one [16—18]. On the other
hand Saleur [19] predicted = i—é a result that was confirmed in numerical work on lattice
trails [20,21]t. Why this exponent does not show up for SAWSs on regular lattices is completely
unclear.
For the Manhattan lattice, it has been shown in [13] that the enumeration data are very
well fitted using an ansatz with no non-analytic terms¥ witk: 1. On the other hand a naive
fit of our Monte Carlo data would indicate just the opposite: the results are well fitted assuming
a correction-to-scaling exponent of order~ 0.5-0.7. Of course one should not take this
indication too seriously—our data are not precise enough for a serious attempt to determine

A—-but it is fair to say that\ = i—é is our preferred value. If we assume= i—é we obtain
y = 1.3436+ 0.0003 (1.6)

in very good agreement With = yeg = 3—5 = 1.34375. We have also tried to analyse our
data assumings = 1. The quality of the fit is somewhat worse, although one could think
that this is simply due to the additional neglected corrections to scaling§ that are still relevant

(1.5)

Tt An additional hint toA = % is the numerical observation of Barkema and Flesia [4] that the average number

of loops of length forming a parallel contact scales &8,); ~ (~165005  From this they estimate that the total
number of parallel contacts behavegag) = a — b/N%®5, On the other handyn ) is proportional to dy (T) /dT

if one includes an orientation dependent interaction, whence there should be generically-aXer?§® ~ N—11/16

inzy(T).

¥ Inclusion of a term withA = % worsens the guality of the extrapolation [22].

§ A similar phenomenon occurs for SAWSs on the square lattice [18]. If one analyses the end-to-end distance for short
SAWSs, with a single correction term, one finds~ 0.80. Only the inclusion of longer walks and more correction
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at the values ofV we are working (the determination of depends mainly on the data with
Niot = 2000, i.e. on walks wittv < 1000).
We do not know how reliable the estimate (1.6) is and a serious analysis of the systematic
errors is practically impossible. In any case, without explicit assumptions,ave can still
obtain the lower bound

y > 1.34254+ 0.0003 (1.7)

Although this result is lower than the estimate (1.6), it clearly supports the fact thageg.
The prediction in [13]y = 1.3385+ 0.003 is instead clearly excluded.

We should point out that if we only analyse data with small value$ ofre would obtain
a lower estimate foy, in close agreement with the result (1.4). This shows the crucial role
played in this problem by corrections to scaling and the importance of performing simulations
for very large values oNV.

2. The join-and-cut algorithm on the Manhattan lattice

2.1. Description of the algorithm

In this section we will define the pivot and the join-and-cut algorithm on a Manhattan lattice.
The Manhattan lattice is a two-dimensional square lattice on which bonds are directed in
such a way that adjacent rows (columns) have antiparallel directions, corresponding to the
traffic pattern in Manhattan. Although bonds are directed, there is no overall directional bias.
Explicitly we will assume the following orientations: a vertical bond connecting the points of
coordinatesx, y), (x, y+1) is directed upward if is even, downward if is odd; a horizontal

bond connecting the points of coordinatesy) and(x + 1, y) is directed to the left ify is

even, to the right ify is odd.

Let us now define the pivot algorithm [23-25]. It works in the ensemble of fixed-length
walks with free endpoints: we will be interested in self-avoiding walks, but the algorithm
can also be applied in a very efficient way to the Domb—Joyce model [26, 27], to power-law
walks [26], and to interacting polymers far from tBetransition [28, 29].

The algorithm works as follows [25]. Given a¥-step SAWw starting at the origin
and ending anywherey = {w(0), ..., w(N)}, an iteration of the algorithm consists of the
following steps:

(i) Choose randomly, with uniform probability, an intedee {0, 1, ..., N — 1}.
(i) Choose with probabilityP (g) an elementg of the lattice point symmetry group. The
probability must satisfy?(g) = P(g~1) to ensure detailed balance.
(iii) Propose a pivot move» — ' defined by

w(i) for 1<

i<k
wk) +g(w@) — wk)) for k+1

/(i S 2.1
w'(i) = <i<N. (2.1)
The proposed move is accepteaifis self avoiding; otherwise it is rejected and we stay
with w.

The probability P(g) must be such to ensure ergodicity: as discussed in [25, 30] not all
symmetry transformations are needed. In particular [30] the pivot algorithm is ergodic on
a square lattice ifP (g) is non-vanishing only for diagonal reflections, that is for reflections
through lines of slope-1.

terms withA; > 1 givesA ~ 1.0.
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For the Manhattan lattice the point symmetry group is much smaller than the symmetry
group of the square lattice. Indeed the lattice is symmetric only with respect to lines of slope
—1 going through lattice pointse, y) with x + y even, and with respect to lines of slope +1
going through(x, y) with x + y odd. Therefore we will modify step (ii) in the following way:

(iN) if w,(k) +wy (k) is even (resp. odd), lgt be the reflection with respect to a line of slope

—1 (resp. +1), going througdh (k).

Sinceg? = 1, detailed balance is automatically satisfied. The tricky point is ergodicity. It can
be proved by slightly modifying the proof of section 5 in [30]. Using the same definitions, the
basic observation is the following: @ (k) = (xt, yx) is a walk site belonging to a diagonal
support line of slope-1 (resp. +1), thenw; + y; is even (resp. odd). Using this fact the proof
works without any change.

We wish now to define the join-and-cut algorithm [14]. The tricky point here is that in
general, given two walks on the Manhattan lattice, their concatenation is a walk that does not
respect the bond orientation of the lattice. More precisely, given two walks, of lengths
N1 and N, the concatenated wallk = w1 o w, respects the orientation of the lattice only iff

mod(wiy (N1) — w2, (0),2) =0 modwy,(N1) — w2,(0),2) =0. (2.2)
This reflects the fact that only translations of two steps in each direction are symmetries of the
lattice. A second consequence of the bond orientation of the Manhattan lattice is the following:
consider a walko and cut it into two part&; andw, such thatv = w1 o w,. In general there
is no lattice translatiorl” such that the translated walky, respects the bond orientation of
the lattice and satisfig§ ;) (0) = w1(0) = w(0). Indeed this happens only if

mod(w1, (0) — w2, (0),2) =0 modw1,(0) — w2, (0), 2) = 0. (2.3)
With these two observations in mind we define our ensemble in the following Way:
consists of all pair§w;, wz) of SAWS, each walk starting either i®, O) or in (1, 1) and
ending anywhere, such that th@tal number of steps in the two walks is some fix@een
numberN;. Moreover we require the lengths @f andw, to be even. Explicitly

Niot/2—-1
Tg = | (52(0.0) U Sp(1, 1)) X (Syp-2x(0. 0) U Syt (1. 1)) (2.4)
k=1
wheresS; (x, y) is the set ok-step walks starting fronx, y) and ending anywhere. Each pair
in the ensemble is given equal weight: therefore the two walks are not interacting except for
the constraint on the sum of their lengths. Notice that there is a one-to-one correspondence
betweens, (0, 0) andS; (1, 1) so that the ensemble defined in egaution (2.4) is equivalent to
Niot/2—-1
Tnw = ) Sx(0.0) x Sy,—2(0.0). (2.5)
k=1

One sweep of the algorithm consists of the following steps:

(i) Starting from a pair of walk$w1, wy), we update each of them independently using some

ergodic fixed-length algorithm. We use the pivot algorithm we described above.

(ii) With probability % we interchange; andwy, i.e. (w1, w2) — (w2, ®1).

(iif) We first check the parity of the endpoints: if m@a, (N1) — w», (0), 2) = 1, we stay with
(w1, wy) . Otherwise we attempfain-and-cutmove. We choose with uniform probability
k € {l,..., Niot/2 — 1}. Then we concatenate the two walkg andw, forming a new
(not necessarily self-avoiding) wadlconc = w1 o wy; then we Cutvgenc Creating two new
walksw’; andw’; of lengths 2 and Nyt — 2k. If 'y andw’, are self-avoiding we keep
them; otherwise the move is rejected and we stay witndw,.

Tt The only exception to this rule is whes is a rod.
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It is easy to see that the full algorithm is ergodic.

The algorithm defined on the Manhattan lattice works essentially in the same way as the
standard one. The only important difference is that one must check the paritigg\af and
w(0) before attempting the join-and-cut move. This check is successful in 50% of the cases
and thus the algorithm we have defined above should be essentially equivalent to the standard
algorithm in which one performs two pivot updates of each walk for every join-and-cut move
(in the notation of [14] it corresponds to the algorithm witly, = 2). In principle it is easy to
avoid this 50% rejection by modifying the third step of the algorithm in the following way:

(i) (improved join-and-cut move)f mod(ws, (N1) — w2, (0), 2) = 1, letwconc = w1 © Rwy,
whereRw; is the walk reflected with respect to the line of slope +1 going thraugh);
if mod(wy, (N1) — w2,(0), 2) = 0, letweonc = w1 0 w2. Then proceed as before.

This modification attempts twice the number of join-and-cut moves with respect to the previous
one, and thus it should be more efficient. However, the difference in performance is not
expected to be large. Indeed from the analysis of the autocorrelation times in [14], we obtaint
that the ratioriy (npv = 2)/Tint(npiv = 1) is equal to 16, 1.5, 1.2 for Ny = 500, 200Q 8000
respectively. For the algorithm on the Manhattan lattice we exge@on—impr) /i (imp)

to be very similar to the previous ratio: therefore fdf,; = 8000 we expect that the
autocorrelation time for the original algorithm to be only 20-30% higher than the corresponding
time for the improved one. One should also keep in mind that one iteration of the improved
algorithm is slower than one iteration of the unimproved one, since one is doing twice the
number of join-and-cut attempts. Therefore we expect thaivigr = 8000 the improved
algorithm is only 10-20% better than the original one. Since the implementation of the
improved algorithm required major changes of our codes, we decided to work with the
unimproved version we described above.

2.2. Determination of from join-and-cut data

Let us now discuss how the critical exponentan be estimated from the Monte Carlo data
produced by the join-and-cut algorithm.

Let us start by noticing that the random variablg the length of the first walk, has the
distribution

) MINaN i even
T(N1) =14 Z(Nwt) 20
0 if Npisodd

for 1 < N1 < Nyt — 1; hereZ (Nyy) is the obvious normalization factor ang is the number

of N-step walks going from the origin to any lattice point whose asymptotic behaviour for
largeN is given by (1.2). The idea is then to make inferences fsbm the observed statistics

of N;. Of course the problem is that (1.2) is an asymptotic formula valid only in the lsirge-
regime. We will thus proceed in the following way: we will suppose that (1.2) is valid for
all N > Nmin for many increasing values @¥, and correspondingly we will get estimates

7 (Niot, Nmin); these quantities aedfectiveexponents that depend di,in and that give correct
estimates of as Nmin and Nyt go to infinity.

The determination of from the data is obtained using the maximum-likelihood method
(see e.g. [31]). We will present here only the results: for a detailed discussion we refer the
reader to [14].

T Notice that in [14]zint(npiv) is reported in units of two iterations, each iteration consistinggaf pivot attempts

and one join-and-cut attempt. In order to make a correct comparison we should muti@lyi) by npiv. Thus what
we report agint(npiy = 2) corresponds to@n (npyy = 2) of [14].
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Table 1. Number of iterations and CPU times per iteration for various valugggf CPU-times
are expressed in ms and refer to an Alpha-Station 600 Mod 5/266.

Niot Niter CPU-time

500 10 0.248(1)
2000  12x 1@  0.846(8)
8000  33x 10® 2.41(3)
32000 23x 10°  9.08(2)

Given Nnin, consider the function (from now on we suppress the dependendgdn

1 if NmingngNtot_Nmin
O (N1) = 0 otherwise 2.7)
and letX be the random variable
X = log[N1(Niot — N1)]. (2.8)
Then define
XcenS(Nmin) = M (2.9)
(ONmin)

where the averagg- ) is taken in the ensemblBy,, sampled by the join-and-cut algorithm.

The quantity defined in equation (2.9) is estimated in the usual way from the Monte Carlo data
obtaining in this wayX ;% Nmin). Theny (Nmin) is computed by solving the equation

Xuc (Nmin) = [ X1, 7 (Nmin) (2.10)
where, for every function o, we define

N f(NDN] ™ (Niot = Np)
Lf (NDtny (Nin) = SR~
NieNpm N1~ (Ntot = N1V~

here the sum is extended ov@renvalues ofN;. The variance of (Nmin) is then given by
Var (X&egs(Nmin))
([XZ X]th,;?(Nmin))2
where [X; X] = [X?] — [X]?. We must finally compute VarX e Nmin)). As this quantity
is defined as the ratio of two mean values (see equation (2.9)) one must take into account the

correlation between denominator and numerator. Here we have used the standard formula for
the variance of a ratio (valid in the large-sample limit)

2
Var <é> _ A Var (i - i) . (2.13)
B (B)? (A)  (B)

2.3. Dynamic behaviour

(2.11)

Var [); (Nmin)] =

(2.12)

Let us first discuss the simulations using the join-and-cut algorithm. We have performed
high-statistics runs a¥;,; = 500, 200Q 8000 and 32 000. In table 1 we report the number
of iterations and the CPU time per iteration on an Alpha-Station 600 Mod 5/266. The total
join-and-cut runs took 1 year of CPU on this machine.

In table 2 we report the acceptance fraction of the pivot and of the join-and-cut moves,
and, for two different values a¥,,in, the autocorrelation times for the observable
XgNmin eNmin

(XeNmin) <eNmin)

Y (Nmin) = (2-14)
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Table 2. Acceptance fraction for the pivot movef,), for the join-and-cut move f{c) and
autocorrelation times for the various values\g§;. Autocorrelation times are expressed in units
of two iterations.

Niot Soiv fic Tint,Y (1) Tint, ¥ (100)

500 0.451943(11) 0.155468(11) .942+0.031 8171+0.023
2000 0.3446316(86) 0.0998629(77) .3@+0.23 1938+ 0.12
8000 0.2624050(83) 0.0629925(65) .8 1.2 5568+ 1.0
32000 0.199693(46) 0.039330(31) 202 7.4 2067+7.0

that, according to equation (2.13), controls the errorg oiNotice thatY (2) = X/(X) — 1,
o thatting y2) = Tint.x-

To compute the autocorrelation times we used the recipe of [32, appendix C]. Indeed
the autocorrelation function has a very long tail with a very small amplitude, due to the fact
that exp > Tint,y. FoOr this reason the self-consistent windowing method in [25, appendix C]
does not work correctly and underestimates the autocorrelation time. Following [32], we have
computedrin.y as

Tint,y = Tint,y + Ttail,v - (2.15)

HereTiy y is the autocorrelation time computed using the self-consistent windowing method
of [25, appendix C] with window¥ = 15t y and

_ ) (2.16)
piv

wherepy (7) is the normalized autocorrelation function afyd is the acceptance fraction of the
pivot algorithm. Of course equation (2.16) is a very rough ad hoc estimate of the contribution
of the tail. ForX, it amounts to approximately 35% fof,; = 32 000, 24% forVi,; = 8000,
15% for Nyt = 2000, and 5% foNy,; = 500. Based on our experience with the pivot algorithm
we have assigned tg, y an error of 10%. The error ofi y was instead computed as in [25].

We have first analysed the acceptance fractions. The general analysis in [14] predicts
fov ~ NP and fic ~ N79, with p = 0.19 andg ~ y — 1 ~ 0.34. A least-square fit to the
data of table 2 gives

p=0.19605+0.00001  x2=603 (2.17)
g =0.325224000004  x2=9197 (2.18)

The very large value of? indicates that the quoted errors prandg, that are of a purely
statistical nature, are unreliable. Indeed a simple power law does not fit the data at this level
of precision. A more realistic estimate of the errors would be

p = 0.1960+ 0.0002 g = 0.325+ 0.004 (2.19)

We have then performed an analogous analysis for the autocorrelatioritimg;,). A
least-square fit of the form

Twil,y = py (W)W log (

Tint,x ~ N°* (2.20)
gives
0.8474+ 0.006 =11 for Npin =1
z =1 0.672+0.004 x? =280 for Nmin = 100 (2.21)
0.747+0.003 x? =50 for  Nmin = 200.

Again, the very large value of? indicates that the error bars are underestimated by at
least a factor of ten. The results are somewhat higher than the estimate reported in [14],
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z = 0.70+ 0.03. This is evident if one directly compares our results of table 2 with the
values ofrj; reported in [14] (see footnote on p 6%, = 4.38(6), 9.47(21), 20.0(6) for
Niot = 500, 2000 and 8000, respectively. R, = 500 the autocorrelation times are similar,
while for Nyt = 8000 there is a factor-of-two difference. It is very difficult to believe that
the join-and-cut algorithm has a different dynamic behaviour on the square lattice and on the
Manhattan lattice. We have thus tried to understand if the authors in [14] underestimated the
autocorrelationtimes. Therefore we have determifygffom our data using the self-consistent
windowing procedure with a window ofth; x as done in [14]. We obtain,; = 4.166(2),
10.093(6), 29.13(2), 98.0(2) for Nyt = 500, 2000, 8000 and 32000, respectively. A fit of
these results gives= 0.7271(2). This is now in good agreement with the results of [14].

In conclusion we believe a fair estimate would be

z = 0.75 0.05. (2.22)

As noticed in [14], with a clever implementation of the algorithm, it is possible that the
CPU-time periterationincreasesi@8witho < 1. Inparticularitwas predicted that= 1—p
where p is the exponent that controls the pivot acceptance fraction. In two dimensions we
expectp = 0.195321) [25] and this is confirmed by our data on the acceptance fraction.
From the data of table 2 we obtain

o = 0.8651) x? =55, (2.23)

Keeping into account that the error bars are underestimated, we find reasonable agreement
with the predictionr = 1— p. Of course what one is really interested in is the autocorrelation
times expressed in CPU units.

We find

Tint ~ N¥*7 ~ N16, (2.24)

The algorithm is not optimal, but still represents an improvement with respect to other
algorithms that behave a¢>2.

3. PERM

3.1. Description of the algorithm

The pruned-enriched Rosenbluth method (PERM) is a chain-growth algorithm based on the
well known Rosenbluth (inverse restricted sampling) [33] algorithm. In the latter, chains are
grown step by step. In unbiased sampling, steps are randomly generated, and, if a new step
violates the self-avoidance constraint, the configuration is discarded and one restarts from
scratch. This leads to exponential ‘attrition’, i.e. the number of attempts needed to generate a
chain of length: increases exponentially with

In Rosenbluth sampling, such steps are replaced (if possible) by ‘correct’ steps. This
diminishes the attrition problem, but it leads to a bias that has to be compensated by a weight
factor. If m, is the number of free sites where to place #tle monomer (i.e., the number
of allowed steps at time), then the weight of a chain of lengi is Wy « ]_[flv=1 m,. The
proportionality factor depends on the ensemble one wants to simulate, e.g. it is constant for
the canonical ensemble with fixed fugacity. The main problem with the Rosenbluth method is
the fact that these weights show large fluctuations for lafg&hus even large samples can be
completely dominated by just a few events, which leads to large statistical errors. Even worse,
for very largeN, the part of the distribution of weights which should dominate might not have
been sampled at all, and this can lead to systematic errors. More precisely, while the method
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is guaranteed to give an unbiased estimate of the partition sum, due to these fluctuations and
to the convexity of the logarithm, estimates of free energies are systematically too small.

The main idea in PERM [15] is to watch the weighl, asN is growing, and to compare
it with the estimated average weight for this value)of If Wy is judged too big, a clone
of the present configuration is made, both clones are attributed a W&jgt, and both are
independently continued (‘enrichment’). On the other hand¥f is too small, a (pseudo-)
random number is drawn uniformly from [01]. If r < % the configuration is abandoned
(‘pruning’), otherwise it is kept and its weight is doubled. This is most easily implemented by
recursive function calls. A pseudocode is given in [15].

In this way the problem of large weight fluctuations is avoided, although not entirely.
The set of generated configurations is now correlated due to cloning. Let ustoalt a
set of configurations obtained by cloning from the same ‘ancestor’. Although the weights of
individual configurations vary between narrow limits, the weights of tours can fluctuate very
much. If so, we are basically back at the same problem. This can be avoided by making
additional biases. For instance, before each step one might look alsegs, and choose the
direction accordingly [34]. This is rather time consuming for lakg@evertheless it can be
efficient for dense (collapsed) systems.

For diluted systems, as it is the case here, the efficiency can be improvedasikayian
anticipation[12, 35]. Here one keeps the l&ssteps in memory, and biases the next step on
the basis of the statistics of ¢ 1)-step configurations accumulated during a previous run.

On the Manhattan lattice, ax-step walk with fixed starting point and fixed direction of
the first step can be encoded as a binary sequence of I8hgth. A straight step is encoded
as ‘0’, while a bend byt-90° is encoded as ‘1’. Notice that one does not have to specify the
direction of the bend, as only one bend is allowed at any time step. If the starting point has
evenx andy and the first step is upward, then the first bend is to the right (left) if it occurs
at even (odd) times. After that, each bend is in the same (opposite) direction as the previous
one if the number of in-between straight steps is even (odd)SLet(s_4, ..., so) = (s, o)
denote a binary string of length+ 1, and letCy ,,(S) be thecylinder setof all N-step
walks starting upward fronx, y) = (0, 0), for which stepsn — &, ..., m are given bysS.

The total weight of this set in an unbiased ensemble is denotedy (S). Finally, we
consider

Wy.m(S)

5,=0,1 Wy m(s, 56)

Prin(sols) = 3= 3.1)

If SAWs were a kth order Markov process, we would obtain perfect impor-
tance sampling for N-step walks if we would select themth step accord-

ing to pwy.m(sols). Given the fact that SAW’s are not Markovian, equa-
tion (3.1) comes closest to importance sampling given a finitestdp) mem-
ory.

In practice, equation (3.1) is not applicable as it stands, since it is practically impossible
to acquire and store the necessary statistics forahd N. First of all we use the fact that
Pn.m(sols) becomes independent &f andm in the limit m, N —m > k. We therefore
estimate it for large values @i and N by accumulating statistics for aN larger than some
lower threshold (we use > 400), andV — m fixed (we usedvV — m = 200). The fact that
this p(so|s) does not give correct importance samplingdor: N is not serious and does not
reduce much the efficiency. More serious is the fact that it would be inappropriate for small
N andm. In particular, form < k we have no string to condition upon. We dealt with this
problem by tapering the symbol sequence with a stringz#ros, and by taking step in the
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Figure 1. Probabilities to reach length at least once in a tour, plotted againét The curves
are for PERM withk-step Markovian anticipation, with = 19, 10, 5, and 0. The straight line is
130/N.

mth step with probability

Consym + Iimm,N—m—>oo pN,m(S0|S)
Agé:O,l[ConSt/m + limm,me%oo pN,m(sO|S)]

m(Sol8) = 3.2
Pm(s0|s) 5 (3.2)
with const~ 20.

Notice that all this fiddling is not crucial. The meth@er seis correct even if the
probabilities for taking thenth step were chosen badly, provided the probability is not set
equal to zero for any allowed step. But efficiency can increase substantially with a good
choice. Efficiency can be measured in several ways. The most straightforward method
consists in measuring tour-to-tour fluctuations. Since subsequent tours are statistically strictly
uncorrelated, this gives immediately estimates for the error bars of any measured observable.
In practice, not to waste CPU time, we bunched tours in groups of typicafiyal®s, and
measured average values and fluctuations over these bunches.

A less direct but more instructive measure of efficiency is the number of tours in which a
length NV is reached in at least one configuration, normalized to the number of all tours. For
other modified chain-growth algorithms such as incomplete enumeration [36] or the Berretti—
Sokal (BS) algorithm [37], it seems that this number decreases as/#angtovided the
cloning and pruning parameters are adjusted so that the total number of generated walks is
independent olN. Improving the details of the algorithm cannot change this scaling law, but
can change the constant considerably. For incomplete enumeration and the BS algorithm, the
constant is @L). For PERM without Markovian anticipation const 10. For Markovian
anticipation withk = 19 we found consts 130, see figure 1.

A last check for efficiency is the following. As we said, the weights of tours can vary
substantially, to the point that the distribution of these weights might be not properly sampled
in the region which should dominate statistical averages. If this happens, the estimates of the
free energies are too low, and all the errors are systematically underestimated. To show that this
is not the case in the present simulation, we show in figure 2 the measured distribution of tour



2942 S Caracciolo et al

=)

GNJ 1 T T T T T

©

£

o)

c

> 0.8 b

s

E

= P(log W)

— 06 .

=

()]

2

T 04 E

=

S

@ 0.2 .

2

(o) -

i) 0 — = !

a 1 10 100 1000 10000
tour weight W

Figure 2. Full line: histogramP (log W) of tours with fixed weigh#, on a logarithmic horizontal
scale. Normalization is arbitrary. Broken lin# x P (log W), again with arbitrary normalization.

weights forN = 32 000, together with the weighted distribution. We see that the maximum of
the weighted distribution occurs at a weight which is still well within our sampling distribution.

3.2. Determination of using PERM data

The raw data produced by PERM are estimates of the partitiorzgurior all N < Npax. It

is then straightforward to obtain estimateg/ofAssuming equation (1.2), the exponentan
be estimated from ratios afy, for three different values a¥;. Indeed, if one chooses two
positive constants < 1 < b, and defines

xlogz.n +ylogz,y —logzy

N) = 3.3
Vett (V) xloga + ylogh (3.3)

one checks easily that#(N) = y, provided that [38]
x+y=1 ax +by = 1. (3.4)

If equation (1.2) is not fulfilled exactly, equations (3.3) and (3.4) define effestidependent
exponents. These exponents still depend@mdb. It is clear that statistical errors will be
small ifa <« 1 « b, but then a wide range of chain lengths are needed. Vhggis fixed
and cannot be exceeded, this meansdbawvill be small, and systematic errors will become
large if we wish to reduce statistical errors. In addition to the ratio, one has the product
a x b atone’s disposal. For fixdg/ a, its optimal value depends on the way how the statistical
error onzy increases withl. In the present case, they increase roughly/ag For practical
reasons one also wishes?! andb to be simple numbers. We found that good results were
obtained withe = 1, » = 4 (and therefore = $,y = 3

The computat|on of the error bars is not trivial. Indeed one should take into account the
fact that different;y are correlated and therefore compute the full covariance matrix, which
is practically impossible. Therefore we proceeded differently to obtain error estimates. For
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Table 3. Number of PERM tours (column 2) witN < Nmay, total number of configurations with

N = Nmax (column 3), number of independent configurations with= Nmax (i.€., of tours which
reachedV = Nnax column 4), and CPU time per independent configuration (expressed in ms, on
an Alpha-Station 600 Mod 5/266; column 5).

Nmax Niour Neonfig Nindep CPU time

500 10 x 10° 1.140x 10°F  2.637x 10° 4.985

2000 8876x 10° 1.010x 10° 6.533x 10" 70.53

4000 1756x 108  2.016x 10® 6.359x 10° 298.6

8000 3421x 10° 4.035x 10° 6.296x 10°  1272.6(4)
32000 2792x 10" 3.703x 107 1.154x 10° 2447) x 10?

each bunch of tours we estimatedd{(N)]punch according to equation (3.3), and from these
values we obtained the variance of the latter. Notice that wendtdise this procedure to
obtainye (N) itself by taking the average over all bunches, as this would introduce a bias.

In addition, in order to improve the estimatesXT" Nnin), cf equation (2.9), obtained
using the join-and-cut algorithm, we evaluated this quantity using the PERM estimatgs of
The estimate of the mean value is trivial. For the error bars, we evalust&H [V min) lbunch
over bunches of tours and then estimated their variance. We used the same tricleas for
Again, notice that we did not use this procedure to estimate the mean value itself, since this
introduces a bias. We have checked, however, that this bias is extremely small.

3.3. Dynamic results

Let us now discuss the simulations using PERM. We have performed high-statistics runs using
Markovian anticipation wittk = 19. The dynamic data of the runs are reported in table 3.
The total PERM simulation would have taken approximately 7 months of CPU time on an
Alpha-Station 600 Mod 5/266.

We have first of all performed an analysis of the CPU time per independent configuration,
which we expect to scale asv: with z ~ 2. Fitting the data of table 3, and including in each
fit only the data withV > Npi, in order to detect systematic effects, we have

1.92 Nmin = 500

R (3.5)
2.08 Nmin = 2000
0.00003 Nmin = 500

a~ (3.6)
0.00001 Nmin = 2000.

The expected exponentx 2 is clearly recovered. Let us now compare these results with the
join-and-cut estimates. For the latter algorithm, the CPU time per independent configuration
scales as (cf tables 1 and-2)0.0003V16 and therefore the join-and-cut is faster in generating
one independent configuration than the PERM as loidg gs1000. This may not be, however,

a fair comparison of the two algorithms. Indeed what we call an ‘independent configuration’
for PERM is a bunch of walks which are correlated, but which still contain more information
than a single walk. In order to make a fair comparison it is better to consider an observable and
compare the CPU time needed to obtain the same error bars. We have therefore compared the
results for our preferred observalb¥é®" Nmin), see table 4. We find that fav,,; = 32 000

both algorithms require essentially the same CPU time to produce data with the same error
bars. Only for longer walks the join-and-cut algorithm is more efficient. Notice that this result
is true if we use the Markovian anticipation. In the absence of this improvement, PERM would
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be about ten times slower and therefore less efficient than the join-and-cut algorithm already

for N ~ 500.

S Caracciolo et al

Table 4. Raw data forX{;®S We report separately the results obtained with the PERM and

join-and-cut algorithms.

Niot = 500 Niot = 2000
Noin X8R0 xgens Nein X5 xgens
2 10599798201214 105997734851 2 133738441259 13374033132
20 1068281651924 10.682800 3692 50 134285517215 13428669115
40 1075716591695 10.7571316555 100 134796982176) 13479771100
60 108180151@514 10.817977@447 150 135246592144 13.52472787)
80 1086850452365 10.8684807356) 200 135644369118 13.56452877)
100 1091057682248 10.9105787280) 250 13599809696) 13.59986767)
120 109455328Q170) 10.945560%216) 300 13631361Q77) 13.63140858)
140 1097427940116 109742889162 350 13659541161) 13.65956951)
160 10997 466 0970) 109974737115 400 13684701@48) 13.68474243)
180 110155706439 11015571677) 450 13707121838) 13707 14Q37)
200 110289316221) 11.028925946) 500 13727027929 13.72703Q31)
Niot = 8000 Niot = 32000
Nrin XEy xgers Nrin XE xgens
2 1614841585) 16.14847Q199 2 18922 0276) 18922 11(36)
100 1617545977) 16.175516184 100 189279675 18.928 0435)
200 1620313%70) 16.203156171) 200 189348373) 18.934 8634)
300 1622923164) 162293171600 300 189418571) 18941 8433)
400 1625372958) 16.2538321500 400 189488970) 18.9488433)
500 1627673352) 162768821400 500 189558868) 189558232
600 1629836148 16.298492131) 600 18962 8066) 18962 7531
700 1631872@43) 16.31881%123) 700 18969 6465) 18969 6Q31)
800 1633791Q39) 16.337938114 800 189763963 18.976 3530)
900 16356 01436) 16.356073106 900 189830362 18.982 9130)
1000 1637311232 163731331000 1000 189895860) 18.9895129)
1100 1638926929 16.389 25293) 1100 18996 0359) 18.9959929)
1200 16404 53926) 16.404 50%87) 1200 19002 3158) 19.002 3528)
1300 1641897624) 16.41893@81) 1300 19008 6356) 19.008 5327)
1500 1644552419 16.44547571) 1500 19020 8553) 19.020 726)
2000 190497847) 19.0497324)
2500 190765742 19.076 4922)
3000 191014437) 191013021

4. Estimate of~

Letus now discuss the results for the critical exponent/e will first analyse the data using the
method presented in section 2.2. This will allow us to use at the same time the data produced
using the join-and-cut and the PERM. In table 4 we report, for varigys, the estimates
of XH&X Nmin) Obtained using the two algorithms. We have checked that the raw data agree
within error bars, therefore checking the correctness of our programs and error bars.

In table 5 we report the estimates of the effective expongntiefined in section 2.2.
A graph of these estimates together with the results of the fits described below is reported
in figure 3. It is evident that the corrections to scaling are particularly strong and indeed
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Table 5. Estimates ofy (Vi) for various values oNmin and Niot.

Nmin ¥ (500) Nmin (2000 Nmin (8000 Nmin (32000

2 1.32950 (3) 2 1.33263(7) 2 1.33773(21) 2 1.34059 (87)
20 1.32584(5) 50  1.33423(9) 100 1.33900(25) 100  1.34097 (92)
40 132776(7) 100 1.33516(12) 200 1.33950(29) 200 1.34105 (97)
60 1.32880(9) 150 1.33569(14) 300 1.33987(33) 300 1.34105 (101)
80  1.32955(12) 200 1.33609(17) 400 1.34015(36) 400 1.34106 (105)
100 1.33011(15) 250 1.33638(19) 500 1.34041(40) 500 1.34112 (109)
120 1.33064(20) 300 1.33661(22) 600 1.34058 (44) 600 1.34122 (114)
140 1.33120(28) 350 1.33681(26) 700 1.34068 (48) 700 1.34136 (118)
160 1.33139(40) 400 1.33692(30) 800 1.34070(53) 800 1.34143 (123)
180 1.33051(63) 450 1.33705(35) 900 1.34080 (58) 900  1.34139 (127)
200 1.33235(132) 500 1.33711(42) 1000 1.34077 (63) 1000 1.34143 (131)
1100 1.34075(68) 1100 1.34162 (136)
1200 1.34073(74) 1200 1.34172 (139)
1300 1.34072(80) 1300 1.34147 (143)
1500 1.34077 (94) 1500 1.34140 (153)
2000 1.34232(178)
2500 1.34256 (205)
3000 1.34250 (236)

1844 b A
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1334 + ° .
1.332 : : : : :
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Nmin

Figure 3. Estimates of the effective exponentsfor Ny, = 2000 (empty circle), 8000 (empty
square), 32000 (empty triangle) and estimates obtained with the optimal amplitude method for

A= % (filled triangle) andA = 1 (filled circle). The dotted lines represengg = ‘3‘—3 and the
estimate of [13]y = 1.3385.

y clearly increases withiVinin and Nyt.  Under the only assumption that in the interval
1000 < N < 32000 the corrections to scaling have the asymptotic sign, i.e. if we exclude

that y will decrease for larger values @¥n,i, and Ny, we obtain (usingVir = 32000,

y > 1.3423+ 0.0018 4.1)
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Table 6. Extrapolated estimates gffor A = 1 andA = 1.

a=1 A=1

Nrin 14 Aopt 14 Aopt

2 1.34306 (6) 0.43(1) 1.34159(6) 0.85(2)

100  1.34300(10) 0.51(4) 1.34200(10) 1.75(13)
200 1.34318(14) 0.54(4) 1.34198(14) 1.93(24)
300 1.34344(18) 0.57(5) 1.34192(18) 1.98(36)
400  1.34357(22) 059 (5) 1.34230(22) 2.23(50)
500  1.34356 (27) 0.59(6) 1.34251(27) 2.40 (59)

This clearly excludes the resultin [13]. Under this very weak assumption, we can conclude that
there is no evidence from our data of the non-universality predicted in [2]. More conservatively,
our data indicate that, if the effect is really there, it is extremely small:

Yieg— ¥ < 0.00144 0.0018 (4.2)

We can improve this bound making additional assumptions on the corrections to scaling.
For each value oV, we assume thaty is well approximated by

v = ApNNY YL +aN"?) (4.3)

for N > Nnin. We are not able to determinte reliably and therefore we have performed fits
for various fixed values oA. Our analysis works as follows. For each trifl€min, Niot, @)

and for each value af, we can define an effective exponeiVmin, Niot, a) (from now on we
suppress the dependencemnusing the natural generalization of equations (2.10) and (2.11)
with a corresponding errohy (Nmin, Niot, @). Then for eachVpin and A we determine the
optimal valueaop: 0f @ and an estimate of the exponentVmin), by minimizing with respect
toa andy (Nmin)

X2 _ Z |:);(Nmin, Niot, a) — P(Nmin)j|2
AY (Nmin, Niot, @)

(4.4)
Niot
where the sum runs ové¥,,; = 2000, 8000, 32000. The statistical errors are obtained in a
standard fashion.
In table 6 we report the results of the fits for various value®d'gf, and for two values of
A, A =1landA = i—é. First let us observe that the estimatesalecreases with increasig
Therefore a lower bound independent of any assumption on the valtveésobbtained using

the results forA = 1. From table 6 we can estimate
y 2 1.3425+ 0.0003 (4.5)

We can try to do more and see if we can obtain from the data a rough indication of the value
of A. In principle we can consider the results for varidisi, and see for which value of

A the estimates do not depend &p,in. Notice however that the results with differeMgin

are strongly correlated—they are obtained essentially from the same data—and therefore an
observed stability or upward trend should be interpreted with caution since it could simply be
an effect of the correlations. If we consider the results of table 6 we see that the analysis with
A= % is extremely stableuo, andy are essentially constant and we can estimate

y = 1.3436+ 0.0003 (4.6)

This result is in perfect agreement with the universal valdg= ;‘—g. On the other hand the

results forA = 1 show an upward systematic trend. However, the effect is barely statistically
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Figure 4. Effective exponentges defined by equation (3.3), plotted againét'¥/6, The
extrapolation to the-axis gives the estimate of.

significant (the results faVmin = 100 andNni, = 500 differ approximately by 1.5 combined
error bars) and one could just think that the systematic increase is simply an effect due to the
neglected corrections to scaling and/or a result of the correlations. Without further hypotheses,
we cannot confidently go beyond the lower bound (4.5). However, if we asgummeyeg,
then A = 1 becomes less plausible and we can say that our data favour the presence of a
non-analytic exponent. We cannot give a reliable estimat, dfut Saleur’s valu%%3 fits our
data very well.

This conclusion is fully supported by the alternative analysis of the PERM data using
equation (3.3). In figure 4 we ploty, obtained witha = 3, b = 4, againstv %16, If A
has Saleur’s value, and if there are no other corrections to scaling, we should expect a straight
line intersecting the-axis aty. The most dramatic deviations from a straight line are strong
period-four oscillations, also observed in [13]. Similar period-four oscillations are observed
for SAWs on the square lattice [9]. They correspond to a singularity of the grand canonical
partition sum att = —1/u [39]. In figure 4 one may also observe a slight curvature which
might suggest that < %. However, a more careful analysis, also using different pairs
(a, b) and additional correction-to-scaling terms, suggests that this effect is not significant. In
contrast, the fact that < 1 seems significant. Accepting far a value betweeé and 0.7,

we find again perfect agreement withy = ‘3‘—2, while the estimate in [13] seems ruled out.
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